Langfuse - Logging LLM Input/Output
LangFuse is open Source Observability & Analytics for LLM Apps Detailed production traces and a granular view on quality, cost and latency
Pre-Requisites
Ensure you have run pip install langfuse
for this integration
pip install langfuse>=2.0.0 litellm
Quick Start
Use just 2 lines of code, to instantly log your responses across all providers with Langfuse
Get your Langfuse API Keys from https://cloud.langfuse.com/
litellm.success_callback = ["langfuse"]
litellm.failure_callback = ["langfuse"] # logs errors to langfuse
# pip install langfuse
import litellm
import os
# from https://cloud.langfuse.com/
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
# Optional, defaults to https://cloud.langfuse.com
os.environ["LANGFUSE_HOST"] # optional
# LLM API Keys
os.environ['OPENAI_API_KEY']=""
# set langfuse as a callback, litellm will send the data to langfuse
litellm.success_callback = ["langfuse"]
# openai call
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Hi 👋 - i'm openai"}
]
)
Advanced
Set Custom Generation names, pass metadata
Pass generation_name
in metadata
import litellm
from litellm import completion
import os
# from https://cloud.langfuse.com/
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
# OpenAI and Cohere keys
# You can use any of the litellm supported providers: https://docs.litellm.ai/docs/providers
os.environ['OPENAI_API_KEY']=""
# set langfuse as a callback, litellm will send the data to langfuse
litellm.success_callback = ["langfuse"]
# openai call
response = completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Hi 👋 - i'm openai"}
],
metadata = {
"generation_name": "litellm-ishaan-gen", # set langfuse generation name
# custom metadata fields
"project": "litellm-proxy"
}
)
print(response)
Set Custom Trace ID, Trace User ID, Trace Metadata, Trace Version, Trace Release and Tags
Pass trace_id
, trace_user_id
, trace_metadata
, trace_version
, trace_release
, tags
in metadata
import litellm
from litellm import completion
import os
# from https://cloud.langfuse.com/
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ['OPENAI_API_KEY']=""
# set langfuse as a callback, litellm will send the data to langfuse
litellm.success_callback = ["langfuse"]
# set custom langfuse trace params and generation params
response = completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Hi 👋 - i'm openai"}
],
metadata={
"generation_name": "ishaan-test-generation", # set langfuse Generation Name
"generation_id": "gen-id22", # set langfuse Generation ID
"version": "test-generation-version" # set langfuse Generation Version
"trace_user_id": "user-id2", # set langfuse Trace User ID
"session_id": "session-1", # set langfuse Session ID
"tags": ["tag1", "tag2"], # set langfuse Tags
"trace_id": "trace-id22", # set langfuse Trace ID
"trace_metadata": {"key": "value"}, # set langfuse Trace Metadata
"trace_version": "test-trace-version", # set langfuse Trace Version (if not set, defaults to Generation Version)
"trace_release": "test-trace-release", # set langfuse Trace Release
### OR ###
"existing_trace_id": "trace-id22", # if generation is continuation of past trace. This prevents default behaviour of setting a trace name
### OR enforce that certain fields are trace overwritten in the trace during the continuation ###
"existing_trace_id": "trace-id22",
"trace_metadata": {"key": "updated_trace_value"}, # The new value to use for the langfuse Trace Metadata
"update_trace_keys": ["input", "output", "trace_metadata"], # Updates the trace input & output to be this generations input & output also updates the Trace Metadata to match the passed in value
"debug_langfuse": True, # Will log the exact metadata sent to litellm for the trace/generation as `metadata_passed_to_litellm`
},
)
print(response)
Trace & Generation Parameters
Trace Specific Parameters
trace_id
- Identifier for the trace, must useexisting_trace_id
instead or in conjunction withtrace_id
if this is an existing trace, auto-generated by defaulttrace_name
- Name of the trace, auto-generated by defaultsession_id
- Session identifier for the trace, defaults toNone
trace_version
- Version for the trace, defaults to value forversion
trace_release
- Release for the trace, defaults toNone
trace_metadata
- Metadata for the trace, defaults toNone
trace_user_id
- User identifier for the trace, defaults to completion argumentuser
tags
- Tags for the trace, defeaults toNone
Updatable Parameters on Continuation
The following parameters can be updated on a continuation of a trace by passing in the following values into the update_trace_keys
in the metadata of the completion.
input
- Will set the traces input to be the input of this latest generationoutput
- Will set the traces output to be the output of this generationtrace_version
- Will set the trace version to be the provided value (To use the latest generations version instead, useversion
)trace_release
- Will set the trace release to be the provided valuetrace_metadata
- Will set the trace metadata to the provided valuetrace_user_id
- Will set the trace user id to the provided value
Generation Specific Parameters
generation_id
- Identifier for the generation, auto-generated by defaultgeneration_name
- Identifier for the generation, auto-generated by defaultprompt
- Langfuse prompt object used for the generation, defaults to None
Any other key value pairs passed into the metadata not listed in the above spec for a litellm
completion will be added as a metadata key value pair for the generation.
Use LangChain ChatLiteLLM + Langfuse
Pass trace_user_id
, session_id
in model_kwargs
import os
from langchain.chat_models import ChatLiteLLM
from langchain.schema import HumanMessage
import litellm
# from https://cloud.langfuse.com/
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ['OPENAI_API_KEY']=""
# set langfuse as a callback, litellm will send the data to langfuse
litellm.success_callback = ["langfuse"]
chat = ChatLiteLLM(
model="gpt-3.5-turbo"
model_kwargs={
"metadata": {
"trace_user_id": "user-id2", # set langfuse Trace User ID
"session_id": "session-1" , # set langfuse Session ID
"tags": ["tag1", "tag2"]
}
}
)
messages = [
HumanMessage(
content="what model are you"
)
]
chat(messages)
Redacting Messages, Response Content from Langfuse Logging
Redact Messages and Responses from all Langfuse Logging
Set litellm.turn_off_message_logging=True
This will prevent the messages and responses from being logged to langfuse, but request metadata will still be logged.
Redact Messages and Responses from specific Langfuse Logging
In the metadata typically passed for text completion or embedding calls you can set specific keys to mask the messages and responses for this call.
Setting mask_input
to True
will mask the input from being logged for this call
Setting mask_output
to True
will make the output from being logged for this call.
Be aware that if you are continuing an existing trace, and you set update_trace_keys
to include either input
or output
and you set the corresponding mask_input
or mask_output
, then that trace will have its existing input and/or output replaced with a redacted message.
Troubleshooting & Errors
Data not getting logged to Langfuse ?
- Ensure you're on the latest version of langfuse
pip install langfuse -U
. The latest version allows litellm to log JSON input/outputs to langfuse
Support & Talk to Founders
- Schedule Demo 👋
- Community Discord 💭
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai